Investigadores del Instituto de Biotecnología y de Biomedicina de la Universidad Autónoma de Barcelona (IBB-UAB) (Catalunya, España) han generado cuatro péptidos (moléculas más pequeñas que las proteínas) capaces de autoensamblarse de manera controlada para formar nanomateriales.

 

Las nuevas moléculas están formadas por una cadena de siete aminoácidos, cada una de ellas utilizando sólo dos tipos diferentes, lo que agiliza y abarata significativamente los procesos de creación de estructuras amiloides sintéticas funcionales para fabricar nanomateriales con aplicación en biomedicina y nanotecnología

En los organismos vivos, las fibras amiloides son agregados proteicos estables y ordenados, pero en determinadas circunstancias son capaces de ensamblarse para formar hebras insolubles y resistentes asociadas a diversas enfermedades, como el alzheimer.

 

En biotecnología, generar estructuras amiloides sintéticas para formar nanoestructuras inspirándose en cómo se crean de manera natural no es nuevo. El ensamblaje de proteínas en fibras estables permite generar arquitecturas supramoleculares que ninguna proteína aislada puede lograr y que se usan como nanoconductores, estructuras fotovoltaicas, biosensores o catalizadores.

 

Muy recientemente, se han imitado secuencias de proteínas priónicas –también amiloides– para formar nanomateriales. El interés de estas secuencias radica en que se ensamblan de manera más lenta y controlada, formando nanoestructuras muy ordenadas y no tóxicas. Pero al ser secuencias muy largas, de más de 150 aminoácidos, resultan muy difíciles y caras de sintetizar.

 

“Con nuestro trabajo hemos demostrado que con un diseño adecuado la medida de las secuencias priónicas sintéticas se puede reducir hasta sólo siete aminoácidos, conservando las mismas propiedades. Los cuatro péptidos que hemos fabricado son las estructuras más cortas de este tipo logradas hasta ahora capaces de formar ensamblajes fibrilares estables”, explica Salvador Ventura, investigador del IBB y del departamento de Bioquímica y Biología Molecular de la UAB.

 

En su trabajo, los investigadores han comprobado la estabilidad y funcionalidad de los cuatro péptidos fabricados. Han construido uno de los nanomateriales de carácter biológico más resistentes a la degradación descritos hasta ahora, unos nanocables recubiertos con plata que podrían actuar como nanoconductores eléctricos y unas minienzimas fibrilares capaces de catalizar la formación de nanomateriales orgánicos.

 

Las aplicaciones de las nuevas moléculas son múltiples, pero los investigadores las quieren centrar “en la generación de nanoconductores eléctricos, y aprovechar su conocimiento de la estructura amiloide para generar fibras sintéticas que puedan catalizar nuevas reacciones químicas. El objetivo final sería generar materiales híbridos peptídicos-inorgánicos que puedan hacer reacciones complejas, como las que hacen, por ejemplo, los fotosistemas de las plantas”, indica el investigador del IBB.

 

Para generar los nuevos péptidos, los investigadores del IBB se han basado en unas secuencias específicas de las proteínas priónicas, llamadas regiones de priones (PrDs). “Hemos estudiado qué aminoácidos son más frecuentes y cómo están distribuidos en estas regiones, demostrando que sólo con cuatro tipos de diferentes distribuidos de manera específica, y combinados siempre con un mismo quinto tipo, es suficiente para tener el código completo que permite formar fibras priónicas sintéticas. De hecho, cada uno de los heptapéptidos diseñados (mini-PrDs) consta sólo de dos tipos diferentes de aminoácidos”, señala Salvador Ventura.

 

El trabajo demuestra la capacidad de ensamblarse de los mini-PrDs en nanoestructuras muy ordenadas, algo que se pensaba era imposible, debido a la gran presencia de aminoácidos polares. Los péptidos conseguidos son más polares que cualquier otro de medida similar utilizado hasta ahora para formar amiloides sintéticos, lo que permite, por ejemplo, su funcionamiento en las mismas condiciones que las enzimas naturales.

 

Con este estudio, los investigadores del grupo de Plegamiento de Proteínas y Enfermedades Conformacionales del IBB que dirige Salvador Ventura abren una nueva línea en su investigación, centrada en el diseño de nanomateriales.

 

“No hemos hecho nunca nanotecnología, pero a la vez siempre la hemos estado haciendo, porque nuestra fuerza radica en el conocimiento del mecanismo molecular del ensamblaje de proteínas en estructuras amiloides. Durante mucho tiempo hemos estado trabajando para elaborar estrategias que eviten este fenómeno en enfermedades neurodegenerativas. Este conocimiento nos ha permitido poder llegar a diseñar las nuevas moléculas que proponemos ahora para fabricar nuevos nanomateriales”, concluye Ventura.

 

La investigación, publicada en la revista ACS Nano, ha sido realizada por Salvador Ventura, Marta Díaz y Susanna Navarro (IBB-UAB) y ha contado con la colaboración de Isabel Fuentes y Francesc Teixidor del Instituto de Ciencia de los Materiales de Barcelona (ICMAB-CSIC). (Fuente: UAB)

Publisher: Lebanese Company for Information & Studies

Editor jefe: Hassan Moukalled


Consultores:
LIBANO : Dr. Zaynab Moukalled Noureddine, Dr Naji Kodeih
SIRIA : Joseph el Helou, Asaad el kheir, Mazen el Makdesi
EGIPTO : Ahmad Al Droubi
Jefe Editorial : Bassam Al-Kantar

Director Administrativo : Rayan Moukalled

Dirección: Beirut-badaro-Sami El Solh Bldg al snubra. p.o.box: 6517/113 | Telefax: 01392444-01392555-01381664 | email: [email protected]

Pin It on Pinterest

Share This