Los astrónomos del observatorio espacial XMM-Newton de la ESA han rastreado los halos gaseosos que rodean las galaxias en busca de materia perdida que, se cree, podría hallarse allí. Sin embargo, no han tenido éxito. ¿Dónde podría estar?

 

Toda la materia del Universo existe bien en forma de materia ‘normal’, bien en forma de la invisible y particularmente esquiva materia oscura, que es seis veces más abundante.

Curiosamente, los científicos que estudian galaxias cercanas han descubierto en los últimos años que contienen tres veces menos materia normal de la esperada; por ejemplo, nuestra Vía Láctea presenta menos de la mitad de la cantidad prevista.

 

Jiangtao Li, de la Universidad de Michigan (Estados Unidos), es el autor principal de un nuevo artículo al respecto y explica que se trata de “un misterio que preocupa desde hace mucho tiempo, que ha llevado a los científicos a hacer grandes esfuerzos para buscar esta materia perdida”.

 

“¿Por qué no está en las galaxias o, si está, por qué no la vemos? Y si no está, ¿dónde está? Es importante resolver este rompecabezas, ya que es una de las mayores incertidumbres en nuestros modelos, tanto del Universo temprano como de la formación de las galaxias”.

 

 

 

Búsqueda de materia perdida en halos galácticos. (Foto: ESA/XMM-Newton; J-T. Li (University of Michigan, USA); Sloan Digital Sky Survey (SDSS))

 

Los científicos creen que, en lugar de encontrarse en la mayor parte de la galaxia que podemos observar ópticamente, se podría hallar en una región de gas caliente que se extiende más allá, formando el halo galáctico.

 

Estos halos esféricos y calientes se han detectado con anterioridad, pero se trata de regiones tan tenues que resultan difíciles de observar detalladamente, ya que su emisión de rayos X se puede perder y resultar imposible de distinguir de la radiación de fondo. A menudo, los científicos observan una pequeña distancia en esta región y extrapolan los hallazgos, pero esto puede dar resultados variables y poco claros.

 

Jiangtao y sus colegas querían medir el gas caliente a mayores distancias con el observatorio espacial de rayos X XMM-Newton de la ESA. Estudiaron seis galaxias espirales similares y combinaron los datos para crear una galaxia con sus propiedades medias.

 

“De esta forma, la señal de la galaxia resulta más potente y el fondo de rayos X muestra un mejor comportamiento”, añade Joel Bregman, investigador de la misma universidad y coautor del artículo.

 

“Así, fuimos capaces de ver la emisión de rayos X unas tres veces más lejos que si observáramos una única galaxia, por lo que nuestra extrapolación resultó más precisa y fiable”.

 

Las galaxias espirales masivas y aisladas ofrecen la mejor oportunidad de buscar materia perdida. Son lo bastante masivas como para que el gas alcance temperaturas de millones de grados y así emitan rayos X, y en gran medida han evitado la contaminación con otros materiales por la formación de estrellas o la interacción con otras galaxias.

 

Los resultados del equipo de científicos mostraron que, al final, el halo que rodea galaxias como las observadas no puede contener toda la materia perdida. A pesar de extrapolar casi 30 veces el radio de la Vía Láctea, siguen faltando casi tres cuartas partes de la materia prevista.

 

Hay dos teorías alternativas principales: o bien la materia se encuentra almacenada en otra fase gaseosa difícil de observar (quizá una fase más caliente y tenue, o una fase más fría y densa), o bien se halla en una porción del espacio que no está cubierta por nuestras observaciones actuales o que emite rayos X demasiado débiles para detectarlos.

 

En cualquier caso, como las galaxias no contienen suficiente materia perdida, es posible que la hayan expulsado al espacio, quizás empujadas por inyecciones de energía procedentes de la explosión de estrellas o de agujeros negros supermasivos.

 

“Este trabajo es importante porque contribuye a crear modelos de galaxias más realistas, lo que a su vez nos ayudará a comprender mejor cómo se formó y evolucionó nuestra propia Galaxia —reconoce Norbert Schartel, científico del proyecto XMM-Newton de la ESA— Los hallazgos de este tipo serían imposibles sin la increíble sensibilidad de XMM-Newton”.

 

“En el futuro, los científicos podrán añadir aún más galaxias a nuestras muestras de estudio y utilizar XMM-Newton en colaboración con otros observatorios de alta energía, como el futuro Telescopio Avanzado para la Astrofísica de Alta Energía (Athena) de la ESA, para sondear las extensas porciones de baja densidad en las fronteras de las galaxias y seguir desvelando los misterios de la materia perdida del Universo”. (Fuente: ESA)

Publisher: Lebanese Company for Information & Studies

Editor jefe: Hassan Moukalled


Consultores:
LIBANO : Dr. Zaynab Moukalled Noureddine, Dr Naji Kodeih
SIRIA : Joseph el Helou, Asaad el kheir, Mazen el Makdesi
EGIPTO : Ahmad Al Droubi
Jefe Editorial : Bassam Al-Kantar

Director Administrativo : Rayan Moukalled

Dirección: Beirut-badaro-Sami El Solh Bldg al snubra. p.o.box: 6517/113 | Telefax: 01392444-01392555-01381664 | email: [email protected]

Pin It on Pinterest

Share This