El Kevlar es un polímero de gran resistencia, que gracias a su ordenada estructura cristalina, tiene una resistencia y tenacidad mayor incluso que el propio acero, por lo que tiene múltiples utilidades, entre las que se encuentran diferentes aplicaciones críticas, como la fabricación de cascos, guantes y ropas de seguridad, chalecos antibalas y neumáticos resistentes a los pinchazos. La mayor parte de los polímeros de gran resistencia, sin embargo, son muy sensibles frente a la luz ultravioleta y las altas temperaturas, y dado que sus aplicaciones son para uso en exterior, deben ser protegidos de la luz solar. La estrategia más utilizada suele ser recubrirlos de resina u óxidos metálicos, pero eso hace aumentar el peso del polímero y le resta elasticidad.

 

Con la intención de buscar otro tipo de solución a esa realidad, la química Itxasne Azpitarte Irakulis recurrió a la hibridación del Kevlar con otro material, en una investigación puesta en marcha con el laboratorio LABQUIMAC de la UPV/EHU (España): “En la naturaleza existen biomateriales con esa estructura, con fracciones inorgánicas intercaladas en matrices orgánicas”. Siguiendo esa vía, tomó las fibras de Kevlar como matriz orgánica, y las hibridó con óxido de zinc. La hibridación dio lugar a “una fase intermedia entre los dos materiales, en la que ambos aparecen mezclados, y además creamos un recubrimiento de óxido de zinc de unos pocos nanómetros de grosor alrededor de la fibra de Kevlar. Vimos que las fibras de Kevlar híbridas resultantes presentan una estabilidad mayor frente a la luz ultravioleta y la temperatura, y dado que el recubrimiento es de escala nanométrica, el polímero no adquiere un peso extra”, explica la investigadora.

 

Para realizar la hibridación, además, siguieron una técnica no muy habitual: “los compuestos químicos que queríamos intercalar en el polímero los teníamos en fase gaseosa, por lo que  se introdujeron en los poros naturalmente presentes en el polímero, y crearon enlaces químicos con las moléculas del interior; es decir, se produjo su infiltración. Y alrededor, como ya hemos citado, formamos el recubrimiento mediante varias capas de óxido de zinc”, describe la doctora Azpitarte.

 

 

En una segunda fase de la investigación, el objetivo fue mejorar los resultados obtenidos en la anterior. “Aunque mejoramos las propiedades térmicas y la sensibilidad hacia la luz ultravioleta, el polímero se vio ligeramente debilitado, debido a que el óxido de zinc reacciona con la luz ultravioleta”, comenta la investigadora. Para ello continuaron utilizando el óxido de zinc para realizar la infiltración, pero para el recubrimiento recurrieron a otro óxido metálico, el óxido de aluminio. “Esa combinación fue la que nos permitió superar completamente la sensibilidad hacia la luz ultravioleta, mejorar la sensibilidad hacia la temperatura, y, además, no perder propiedades mecánicas”, continúa.

 

Tras la consecución de estas mejoras, estudiaron si el Kevlar híbrido podía tener nuevas funcionalidades: “escogimos la conductividad eléctrica y las propiedades fotocatalíticas. El óxido de zinc es conductor eléctrico por naturaleza, pero vimos que las fibras de Kevlar hibridadas con este óxido presentaban una conductividad mucho mejor que el propio óxido de zinc. Al estudiarlas en mayor detalle, observamos que era la parte donde se encuentra infiltrado el óxido de zinc en el Kevlar la que le otorga esa conductividad extra a la fibra híbrida”, detalla Azpitarte. Asimismo, dado que estas fibras tienen propiedades fotocatalíticas, tienen la capacidad de descomponer la materia orgánica al ser iluminadas con luz visible.

 

Esto hará que el Kevlar pueda tener aplicaciones que hasta la fecha no podía tener. “Gracias a las propiedades fotocatalíticas, podrían confeccionarse tejidos inteligentes que se lavan por sí mismos, por ejemplo, ya que descompondrían la suciedad al ser expuestos a la luz solar. La conductividad eléctrica podría servir para desarrollar dispositivos flexibles, o incorporarlos en las prendas”. A fin de cuentas, la unión de las propiedades provechosas de los dos materiales, como el peso ligero y la elasticidad del polímero y la resistencia y estabilidad térmica y química del óxido metálico, “se podrán crear infinidad de aplicaciones para esos materiales híbridos”, concluye Azpitarte. (Fuente: UPV/EHU)

Publisher: Lebanese Company for Information & Studies

Editor jefe: Hassan Moukalled


Consultores:
LIBANO : Dr. Zaynab Moukalled Noureddine, Dr Naji Kodeih
SIRIA : Joseph el Helou, Asaad el kheir, Mazen el Makdesi
EGIPTO : Ahmad Al Droubi
Jefe Editorial : Bassam Al-Kantar

Director Administrativo : Rayan Moukalled

Dirección: Beirut-badaro-Sami El Solh Bldg al snubra. p.o.box: 6517/113 | Telefax: 01392444-01392555-01381664 | email: [email protected]

Pin It on Pinterest

Share This